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Propulsion by oscillating sheets and tubes 
in a viscous fluid 

By J. E. DRUMMOND 
The Australian National University, Canberra 

(Received 19 November 1965) 

Taylor’s formula for the velocity of an oscillating sheet in a viscous fluid is 
extended to larger amplitudes of motion and his formula for the velocity of 
a rotating or oscillating filament is proved to be valid for amplitudes of motion 
small but greater than the filament radius. A simple formula is derived for the 
velocity of a sheet or filament in any general oscillatory motion of small ampli- 
tude. The forces and energy involved in oscillating tubes are calculated. 

1. Introduction 
Taylor (1951, 1952) has treated the problem of motion of an infinite sheet in 

sinusoidal motion in a viscous liquid at low Reynolds number and has shown that 
there is a non-zero velocity at  which the thrust developed equals the drag. 
A similar treatment of an infinitely long cylinder oscillating transversely or in 
a rotating spiral leads him to a similar result, but in this case his choice of mathe- 
matical model makes his solution valid only for amplitudes of motion less than 
the radius of the cylinder. 

Taylor’s (1951) result for the sheet is extended here to larger amplitudes of 
motion and a different choice of mathematical model for the filament shows that 
Taylor’s (1952) result for the filament is also valid for amplitudes of motion still 
small but greater than the filament radius and consistent with Hancock’s (1953) 
results for very thin filaments for all amplitudes of motion. 

2. The motion of an oscillating sheet 
(u) Taylor (1951) showed that an infinite sheet in steady transverse sinusoidal 

motion in a plane progressive wave of small amplitude propels a viscous liquid 
forward in the direction of the wave a t  a non-zero velocity. 

If we apply the same analysis to a sheet in a general transverse motion 
described by the lateral displacement, 

we must relax Taylor’s condition that the sheet is inextensible except when all 
the components of the wave have the same velocity. 

However, if we write down the first-order terms for the fluid stream function 
and equate the normal component of fluid and sheet velocity to f i s t  and second 
order at  the surface of the sheet, and, in place of the inextensibility conditions, 
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we say that the velocity component parallel to the mean position of the sheet is 
periodic in both x and t to first order, then we obtain the fluid velocity at  infinity 

provided no pairs of k and g are identically equal. 
The higher-order terms in the expression for v may be affected by the tangential 

motion (stretching or sliding) of the sheet, but not the first-order terms. 
We may interpret this result physically as follows: the normal component of 

the sheet’s motion will push liquid in the direction of the normal and the tangen- 
tial component of the sheet’s motion will drag liquid with it. If the sheet is 
inextensible and contains a wave of fixed shape of velocity V and wavelength L, 
while the arc length for the wavelength L is S, then at any point where the sheet 
is inclined at 8 to its mean surface the normal component of velocity is - V sin 8, 
and the tangential component of velocity is V(cos 8 - S/L). 

Resolving along the mean line of the sheet, the normal thrust tends to induce 
a velocity in the fluid which is the mean value of 

V sin2 0, (3) 

while the tangential drag tends to induce a velocity in the opposite direction 
which may for large amplitudes tend to infinity. We may then conclude that the 
fluid velocity has an upper bound V and no lower bound can be given for an 
inextensible sheet whose amplitude of motion is large. 

Furthermore, for small values of 8, 

V sin2 8 + C +kn gn b i ,  
n 

if g n / k ,  is constant. Hence, for small amplitudes of motion, the velocity induced 
in the fluid is approximately that induced by the normal motion and the 
tangential effect is negligible. 

(b )  Taylor’s (1951) rigorous treatment of viscous motion due to an inextensible 
sheet in sinusoidal motion for bk < 1 gives the fluid velocity at infinity 

on adding two more terms to Taylor’s result. 

to have an analytic continuation for bk > 1. 

of the series, we obtain the following values: 

This series is convergent for bk < 1 and may be expected on physical grounds 

On using Shanks’s (1955) el operation repeatedly to improve the convergence 

1 1 1 2 b2k2 T 2 

vk /g  0.0958 0.153 0.215 0.26 

while for the range 0 < bk < 1 these values may be fitted reasonably well by the 
formula 

g 0*518b2k2 
k 1 + 1*406b2k2’ 

v = -  
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or 
c 0*508b2k2 - 0.030b4k4 v = -  
k 1-1*224b2k2 ’ 

both formulae agreeing within a few per cent for b2k2 < 2, but being quite 
unreliable for larger amplitudes. These formulae may be compared with 
Hancock’s (1953) formulae for plane and spiral waves in a thin filament. 

(c)  Since any periodic motion with finite oscillation may be analysed into 
a Fourier series of discrete terms, the displacement given by equation ( 1 )  repre- 
sents any periodic motion, and furthermore if y is as given in equation ( 1 )  then 

where the average is taken over both x and t .  This is the liquid velocity given in 
equation ( 2 ) .  Hence we may conclude that, for any general oscillatory motion of 
a sheet in which the slope of the sheet is small, the first approximation to the 
velocity of the liquid relative to the sheet is 

This formula may also be obtained for an oscillating filament from Hancock’s 
(1953) vector formula. The corrected statement of the condition for finite energy 
in his formula (49)  is 

lim LJs (f(x) t + g(x) n + h(x) b) ds = 0, (7 )  
s-tm2s -s 

where s is the arc length replacing the linear dimension x and similarly in his 
formula (51) ,  while his formula (47) gives the surface velocity of the filament, 
which need not be in the direction of the filament but any direction, so his 
formula (50) may be generalized to 

- 2f(x) t - g ( x ) n  - h ( z ) b  + V = U, (8) 

where U is the velocity of the filament and V is the fluid velocity at infinity. 
Hence 

f(x) = +t.(V-U), g(x) = n.(V-U) ,  

and h(x)  = b.(V-U). 

Substituting in the energy integral, 

lim - [V-U-gt.(V-U)t]ds = 0. ( 9 )  s-tm2s S’ -s 

Hancock (1953) also concludes in 3 3 that, apart from small end effects, finite 
filaments travel at the same speed as infinite filaments, so the above formula 
will also hold for a finite filament with the limits of integration changed to the 
ends of the filament. 
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For small amplitudes of motion, suppose the filament is close to the x-axis and 
oscillating transversely in both the y- and z-directions, then 

u =  0,- - .  ( 2 7  :;) 
Also V and t will be close to the x-direction and ds I dx so 

Substituting in the x-component of equation (9) we find 

for a filament oscillating with small amplitude of motion. 

3. The motion of a viscous fluid round a rotating helix 
Let the helix consist of a cylinder of radius a twisted into a helix of radius b 

and wavelength 2nlk, rotated with frequency w/2n ,  so the equation of the arc of 
the helix is 

for a helix rotating about the z-axis. 
Taylor (1952) gives the velocity of propagation of the helix through a viscous 

liquid and an incorrect expression for the couple required to maintain this motion 
when the surface of the cylinder does not rotate, and points out that his analysis 
is valid only for small values of kb and for b < a, while it is exact for all values of 
ka. The reason for this is that, in the mathematical model used to represent the 
motion of the fluid, his functions would have singularities in the fluid for b > a. 

To avoid this difficulty we use a skew co-ordinate system with the centre of 
the cylinder as the origin of cylindrical ( r ,  8) co-ordinates and x measured along 
the axis of the helix. The co-ordinate transformation from rectangular (x, y, x )  
co-ordinates is 

x = bcos(8-8’)+rcos8, y = bsin(8--8’)+rsin8, z = <, 

x = b cos (wt- kz) ,  y = b sin (wt - kz) 

where 8’ = 8 + kc- wt. 
The differential equations for the fluid velocity are then put in tensor notation, 

and then written out in terms of the skew co-ordinates, and a solution for the 
pressure p and velocity components u,, uo, zc, is sought in the form 

p = pk(Alsin8’+bkA,sin28‘+ ...), 

U, = B, sin 8’ + bkB, sin 28’ + . . . , 
uo = C0+C1c0s8’+bkC2c0s28’+ ..., 
U, = Do + D, cos 8’ + bkD, cos 38’ + . . ., 

where the ABCD’s are functions of r only and are bounded for a < r < 00 with the 
boundary condition on the surface of the cylinder r = a that the fluid velocity 

U, = bw sin 8’, ug = aQ + bw cos 8’, u, = 0,  
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which is the velocity of the surface of the helix, which rotates with angular 
velocity o while its surface skin rotates with angular velocity !2 (a = o for a rigid 
helix and il = 0 for the case considered by Taylor (1952)). 

On substituting in the differential equations we find that the lowest-order 
terms in bk are 

B, = [blKo(kr) + c1K2(kr)  + a,krKl(kr)]/2e,, 

C, = [blKo(kr) - clK,(kr)]/2e,, 
D, = [dlKl(kr)  - a1krKo(iEr)]/2e1, 

A ,  = aiK,(kr)/e,, 

where the K's are modified Bessel functions while u,, b,, cl, d, and el are constant. 

FIGURE 1. Cross-section of the helix. 

From the boundary and divergence conditions 

C, = u2Q]r and Do = 0 
t o  first order in kb and 

U, = 2boK1(2K, + uK0)/u, 

bl = bw[u(K! - 2K3 - 2K1 K O  + ~ K : / W ] ,  
- bwK:U, 

d, = bwKo(2K1 +do), 

el = ( K ,  + uK,) (Ky - K i )  + 2K0K3u, 
where u = ka, KO = K0(ka), K ,  = K1(ka), 

while to second order in kb c 

and 
wkb2 blc 

Do = q- (212,+uKO) ( K ~ - - K ~ + 2 K 0 K 1 / u ) + -  {a,krK,(kr)-2(a,+dl)Ko(kr)}. 

(12) 

The velocity of the fluid at infinity produced by rotating the helix is the constant 
term in Do. This is the same result as derived by Taylor (19521, valid for all ka. 

4% 
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and a fist-order approximation for small kb, but this analysis using spiral 
co-ordinates shows that the restriction b < u is not necessary. 

We now proceed to list some further results of the theory. If  ka is small the 
fluid velocity a t  infinity is 

k2u2 8KE - 2K0 + 3 
- + o ( k 4 3 ) ,  

and the circulatory velocity of the fluid for large r is 

a2Q/r + 2b2w/(2K0 + 1) r + Ofka), (14) 

while if ka is large the fluid velocity at infinity is 

wkb2 2 (1 + & + 0 (&4, 
and the circulatory velocity of the fluid for large r is 

u2Q/r+ (b2w/2r) (ka + # + O(ka)-l). (16) 

The couple required to produce this motion is obtainable from the resultant 
thrust and couple of the tractions on the skin of a section of the helix. If the 
contact between the skin and core of a circular section of the helix is smooth, 
then the only force between the skin and core will be a radial pressure, so the only 
action on the core will be a force through the centre of the section. The traction 
will also produce a couple acting only on the skin. 

The only action a t  C in figure 1 is a force whose line of action is perpendicular 
to OC and opposes the rotation. Its magnitude is 

7r,ubwuK,(uK: - uK$ + 2K0 K ,  + 8K2,/u)/el. 

- n-p{4u2Q - b2wu2Kl(Kg - K: + 2K0K,/u)/e1), 

- 47rp{u2Q + b2wKl(u2K; - u2KE + 4K2,)/2e1} = - 4n,u(rC0), 

(17) 

The couple on the skin of the helix is 

(18) 

(19) 

and the resultant couple about the axis, 0, of the helix is 

and the energy output per unit length is 

n-,u{4~~<2~ - b2!22wu2K,(Ki - K2, + 2K0K,/u)e1 

+ b2w2uK1(UK2, - uKg + 2KoKl + 8Kf/u))/el = 4npb2w2/(K0 + g)  (20) 

for small ka. The case for Q = 0 was considered by Taylor (1952). He incorrectly 
used u); instead of v; in his equations (3.10) and (3.12), and the expression for the 
couple in his equation (3.13) should be - ~ 

47rpb2K U/{K,(KU) + 41 instead of - 4 ? ~ , u a b ~ ~ ~  u 

The former expression agrees with (19) above. The remainder of Taylor’s paper 
is not affected by this error. 
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4. The motion of an oscillating tube in a viscous fluid 

co-ordinates may be used 
In the case of a tube oscillating in a plane through its axis a set of skew 

x = bcos(k<-wt)+rcos8, y = rsin8, z = 6 
and the surface of the tube is r = a. 

The hydrodynamic equations can be expressed in terms of these skew 
co-ordinates and solved for small Eb while a may be as large or as small as we 
please. Apart from the energy output per unit length the results agree with 
Taylor's ( 1952). 

If kb is small, the force exerted by the liquid on the tube is in the x-direction 
a t  right angles to the tube and in the opposite direction to the tube's transverse 
velocity and of magnitude 

T,ubw(SK2,+ 2uKoK, + u2(K: - lit)) (Kl/e,) sin (kz - wt) ,  (21) 

where u = ka and K O  and K ,  are modified Bessel functions of argument ka. 
If ka is small the transverse force is 

477pb~ sin (kx - wt)/(Ko + 4) 
and the average energy required per unit length to maintain the motion is 

2m,ub2w2/(Ko+ 4). (22) 

The corresponding value given by Taylor ( 1952) is half this, owing to the omission 
of a factor 4 before the quantities B and C in his equation (2.36). The consistency 
of the present result may be easily confirmed by comparison with the resuIt for 
the helix for small ha. If the transverse velocity of the tube is 

v = bw sin (kz - wt), 
then the force on the tube is 

- 4npv/(li0 + &). 

If such a force acts about the axis at  a distance b from the axis, it produces 
a couple 

which is the value of the couple on the helix for a velocity bw with 0 = 0. 

- 477,UbV/(Ko+ &), 
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